Ionic Liquid Design for Enhanced Carbon Dioxide Capture – A Computer Aided Molecular Design Approach

نویسندگان

  • Petar Sabev Varbanov
  • Jiří Jaromír Klemeš
  • Peng Yen Liew
  • Jun Yow Yong
  • Fah Keen Chong
  • Fadwa T. Eljack
  • M. Atilhan
  • Dominic C.Y. Foo
  • Nishanth G. Chemmangattuvalappil
چکیده

Greenhouse gases emission is known as the main factor of climate change, and carbon dioxide (CO2) makes up vast majority of them. Carbon capture and storage (CCS) is a vital technology to mitigate industrial CO2 emissions, which is mainly generated in power plants. Currently, post-combustion capture based on aqueous amine scrubbing is considered as the most suitable technology for CO2 capture. However, the use of amine for CO2 capture has some disadvantages, such as high energy required for solvent regeneration, high solvent loss, and degradation of solvent. Recently, ionic liquids (ILs) are considered as potential alternative, because they have negligible vapour pressure, and high thermal stability. In addition, through matching of cations and anions, ILs provide a flexibility to tune their properties. However, due to vast number of potential ILs, time and expense required to obtain the optimal ILs for CO2 absorption through experimentation is unaffordable. This work presents a Computer-Aided Molecular Design (CAMD) approach for the design and selection of optimal ILs specifically for the purpose of CO2 capture. The approach utilises group contribution method to estimate the thermophyscial properties of ILs, by considering the structural constraints and allowed combination of cations and anions. Predicted properties of the potential candidates are in good agreement of experimentally measured properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon dioxide capture by aminoalkyl imidazolium-based ionic liquid: a computational investigation.

Efficient technologies/processes for CO(2) capture are greatly desired, and ionic liquids are recognized as promising materials for this purpose. However, the mechanisms for selectively capturing CO(2) by ionic liquids are unclear. In this study, the interactions between CO(2) and 1-n-amino-alkyl-3-methyl-imidazolium tetrafluoroborate, an amino imidazolium ionic liquid (AIIL), in its CO(2) capt...

متن کامل

Ionic Liquid Mixture Design for Carbon Capture using Property Clustering Technique

Ionic liquids (ILs) have recently been introduced as green solvents and potential substitute to volatile organic compounds. This is due to their negligible vapour pressure, high thermal stability, and large liquid phase range. Moreover, their physical and chemical properties can be tuned accordingly by proper choice of cations and anions. Thus, researchers suggest replacing conventional amine b...

متن کامل

An Experimental Investigation of Reactive Absorption of Carbon Dioxide into an Aqueous NH3/H2O/NaOH Solution

In this research, the reactive absorption of carbon dioxide in an aqueous solution of NH3, H2O, and NaOH has experimentally been investigated. The experiments were carried out in an absorption pilot plant in different operational conditions. The composition and temperature of both gas and liquid phases were obtained during the column height. The concentration of molecular ...

متن کامل

Experimental Investigation of Reactive Absorption of Ammonia and Carbon Dioxide by Carbonated Ammonia Solution

In this work, reactive absorption of gases in aqueous electrolyte solutions has been investigated resulting in the development of a procedure in order to calculate the concentrations of ionic and molecular species in the liquid phase. Two duplicate experiments were conducted to investigate simultaneous reactive absorption of ammonia and carbon dioxide in partially carbonated ammonia solutio...

متن کامل

Investigation of carbon dioxide capture from hydrogen using the thermal pressure swing adsorption process: Central composite design modeling

In this study pre-combustion capture of carbon dioxide from hydrogen was performed using a 5A zeolite adsorber. A one column thermal pressure swing adsorption (TPSA) process was studied in the bulk separation of a CO2/H2 mixture (50:50 vol%). The adsorption dynamics of the zeolite bed were investigated by breakthrough experiments to select the suitable range for operational factors in the desig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014